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We consider a cosmological model in which the early universe is dominated by the equation of state p= —p/3 corresponding to
a coasting cosmology. This equation of state was first obtained in the context of cosmic string theories whereas its one-parameter
generalization describing a coasting early universe followed by a radiation-dominated universe was first derived from Kaluza—
Klein theories based on Euler form actions. We show that in such a model the ure is almost absolute zero at the b
and the universe quickly heats up to maximum temperature.

The past few decades have been remarkable from
the point of relativistic cosmology. On the one hand
the discovery of the cosmic microwave background
radiation has confirmed that the universe at one time
was very hot as predicted by the hot big-bang model.
On the other hand it has turned out that this standard
model of the universe has some problems which can
only be solved by introducing new ideas. For exam-
ple in the standard Robertson-Walker cosmology it
is possible to solve the horizon problem only with an
equation of state with negative pressure. It turns out
that if in the early universe p< —p/3 then there is no
horizon problem [1,2]. The case p=—p/3 corre-
sponds to the coasting universe [3] which expands
linearly in time. Such a behaviour, according to Vi-
lenkin [4], is obtained by a universe dominated by
cosmic strings. A similar equation of state has also
been derived by Gasperini et al. [5] for unstable
strings, i.e., non-oscillating string configurations
whose proper amplitude tends to evolve, asymptoti-
cally, like the radius of the universe.

Various attempts have been made to initiate the
universe with a string phase. Besides solving the
problems of standard cosmology, these models also
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try to provide an explanation as to why the space di-
mension of the universe is three. In these works, the
strings considered are either supersymmetric or clas-
sical strings obeying the Nambu-Goto equation.
These studies have once more shown the importance
of the statistical and thermodynamical properties of
a string gas. The results of these studies depend on
the single string spectrum specified by the particular
theory.

Matter which behaves differently from point par-
ticles can cause a difference in the dynamical behav-
iour of the universe. Here we will describe the global
aspects of the dynamics of such a universe by inves-
tigating a Friedmann—Robertson-Walker cosmology
with an unusual and interesting equation of state
which has first been derived from Kaluza-Klein con-
siderations [6-8]

_ g i+p/po i (1)
p/po
where p, is a constant. Covariant conservation of the

energy-momentum tensor leads to the continuity
equation

p

R
p’+3(p+p)E=0. (2)

This equation together with the equation of state
given by (1) yields
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where R, is the integration constant. As can be seen
from (3) the energy density p is a monotonically de-
creasing function of the world-radius R. As the world-
radius tends to zero, the energy density tends to in-
finity. Hence in the early universe the equation of
state given by (1) reduces to p=—p/3. With this
equation of state the Friedmann equations give R~ ¢
and p~R~2? and zero deceleration. These are the
properties of a cosmic-string-dominated universe
[3,4]. Because of these properties we call the very
early stage of the universe the cosmic string stage. In
the late stages, as the world-radius becomes very large,
the energy density tends to zero and p=p/3, corre-
sponding to a radiation-dominated universe. To find
the string content and radiation content of the uni-
verse we use

p=pc+ps, P=D:+Ds,
D: =pr/35 b= "ps/3 >
together with (1) to obtain

2/po

_ _, (lpo)?
=P T+pl00 “

STy

These equations show that in the beginning as p—co,
there is some radiation contributing an amount p, to
the energy density. The radiation density starts from
this value and continually decreases.

For a string-dominated universe the energy density
is a function of temperature only, provided that there
are no winding modes. In the framework of Kaluza—
Klein theory there are no winding modes, provided
that the space, including internal space, is simply
connected. Hence we consider an energy density
which only depends on temperature and investigate
the consequences of the equation of state (1)

According to the second law of thermodynamics,
the entropy of the universe is a function S(7;, V) with

pl' p!

1
dS(T, V)= {d[p(DV]+p(T)dV} . (&)
So the equality of the mixed derivatives yields

ap(T) 1
T=?[P(T)+P(T)] . (6)
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In our case, the use of (1) and (3) results in

dp _ 2p(1+p/po) (2+p/po)
dT T 1-2p/po—(p/po)* °

which by integration gives

_ [p/po(2+p/p0) 14
T=V2T, 1+p/po ’ ™

where T, is the integration constant. By use of (3) in
(7) we obtain

R,R
T=\/§T1W. (8)

From (8) we see that the temperature starts from zero
at R=0 and increases to its maximum value T, at
R=R,. This is the most striking feature of our model.
Nevertheless this is not surprising since it is well
known that the temperature of a non-interacting gas
of continuously extended objects cannot exceed a
maximum temperature, known as the Hagedorn tem-
perature [9]. The new result is the steep increase of
temperature from almost absolute zero to 7. A de-
tailed investigation of other thermodynamical quan-
tities shows that there is indeed a phase transition at
T=T,.

We would like to mention that in string theories
containing winding modes the energy density de-
pends on both the temperature and the volume. In
this case the temperature initially remains constant.
For example for a universe filled with type II super-
strings such a 7-R curve was obtained by Branden-
berger and Vafa by using thermodynamical argu-
ments without any reference to the dynamics of
gravity [10].

By use of (6) in the energy conservation equation,
(2), weget [2]

d (R3?
3(7 [p(T)+pm1)=0. ©)
On the other hand using (6) in (5) one obtains
4S(V, )= $4{[p(D)+p(D1V)
|4
73 [p(T)+p(T)]dT,

50, except for a plausible additive constant,
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S(V,T)=LT/[/7(T)+P(T)]~ (10)

When we consider (9) and (10) together we see that
as a result of energy conservation the universe evolves
with constant entropy. So the form of our 7-R curve
is implicitly dictated by adiabaticity.

In order to calculate the (constant) value of the
entropy we use (1) and (10) to get

2n°R*2 2+p/po
T 3 T+pipe

Substituting for 7" from (8) and recalling (3) this
gives
2(22)poR3

S= 37, . (11)
In the above formulae we have denoted the quan-
tities corresponding to the maximum temperature
with the subindex 1 and the ones corresponding to
zero pressure with the subindex 0. Both conditions
approximately correspond to the instant when the
universe passes from the cosmic-string-dominated
stage to the radiation-dominated one. Using the above
formulae one can easily compute

Ry=0.76R,, To=0.93T,, po=2.4p,. (12)

Determining a value of the parameter R, will be
one of the main objectives of this paper. (11) shows
that if p, and T are chosen to be the Planck density
and the Planck temperature the large value of the en-
tropy of the observed universe is a direct conse-
quence of the large value of the parameter R, com-
pared to the Planck length.

Using the present entropy of the universe which in
dimensionless units is approximately 10%” one ob-
tains that R, is approximately 10?° Planck lengths
which is roughly the geometric mean of the present
size of the universe and the Planck length. Although
this choice for the parameter R, seems quite natural,
the fact that it turns out to be much larger than the
Planck length is the flatness problem which in the
context of the present model is not solved.

Thus we find that for densities greater than the
Planck density, the universe behaves as a cosmic-
string-dominated one in the framework of homoge-
neous and isotropic (3+ 1)-dimensional general rel-
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ativity. We know that at the Planck density the quan-
tum gravitational effects dominate the space-time
structure. Hence in Kaluza-Klein models with Euler
form actions the quantum gravitational effects man-
ifest themselves in the effective (3+ 1)-dimensional
relativistic cosmology as a universe evolving sponta-
neously from the cosmic-string-dominated stage into
aradiation-dominated one.

Comparing our model with that of ref. [10] we see
that although superstrings and cosmic strings in to-
day’s universe are entirely different objects, in the
early universe when the universe is small their effects
on cosmology can be identical. One interesting obser-
vation in this regard is that the temperature (8) de-
rived in our model is invariant under the inversion
R/R,—R,/R. Such a behaviour is precisely what is
expected in superstring theory. However our value of
R, ~10% in Planck units is quite different from the
value R, =1 advocated in ref. [10].

Now, we turn to discuss the well-known horizon
problem of standard cosmology which forces us to
abandon the view that radiation dominance extends
until the very beginning of the universe. The condi-
tion for the solution of the horizon problem is
daec~ du(Laec ), Where dy. is the proper size of the part
of the universe that is now visible taken at the time
of decoupling, and dy (2. ) is the maximum distance
which can be covered before #4.. by a signal travelling
with the speed of light, i.e., the proper distance of the
particle horizon at decoupling [11]. We know that
dee=d(t40c) =6.9% 10% cm and t4e, =3 X% 1025 [11].
Let us calculate

R(1) dR
du(t)=cR(t) J. RR 13)
Ri
for our model. Substituting the value of R from the
first Friedmann equation (for simplicity k=0) and
using (3) we get

c 3 e
du(t)=— 5(—87:6/;0) r(t)

V()
1+02 1
122
where r(t)=R(t)/R,, v=,/r*+1—r? and R, is the
initial world-radius of the order of a few Planck
lengths. Evaluating the integral one finds

(14)
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c 3 1/2
antin)= 7 (520)
X(va.‘;’z —pol?

Va1
:;vm+l'—“0g

+ Arctg /vgeo— Arctg \/E)R(zm) . (15)

+14log

Jeac|

vin+1

Using the accepted value of R(t4.) and approximat-
ing \/Vin,

Vdec % X10~%, \/v—i,,;1—§r§,, s
we get

3
du(taec) = ERU@«)

and

dH(tdcc)= 3 R(laec)
dac /28 duec

3 1 o2
_\/2_86-9XI0 R (Laec) - (16)
Today it is known that decoupling occurs just after
equilibrium, at the beginning of the matter era. Now
we make an approximation and continue to use the
same analytic formula for ¢ [8] even after equilib-
rium:

3 1/2 P
t=t5c — (m) Arctg ' % ,

where ¢, . is the expression for the time in the stan-
dard radiation-dominated cosmology. The second
term on the right-hand side has an upper bound of
10~** s and is totally negligible at the time of decou-
pling. Hence

172
et )
dec = \ts.c. Jdec = 3275Gpd.ec N
This gives
Pacc=10Y%gcm 3.
Solving R from (3) gives
332
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Rye = 10%cm . (17)
Combining (16) and (17) we get

it (Laee) ~ dacc »

and this shows that at the time of decoupling the
comoving volume which contains our presently ob-
served homogeneous universe was causally connected.

In conclusion we would like to emphasize that once
eq. (1) is assumed the only other assumption needed
to fix the model is the size of the parameter R,. Eq.
(1) can be derived [ 8] within the context of the gen-
eral Kaluza-Klein cosmology [7] with constant in-
ternal space size and zero internal pressure. The con-
stancy of the radius of internal space guarantees that
the gauge coupling remains constant as the universe
evolves, as well as the fact that the continuity equa-
tion is exactly the same as for a (3+ 1)-dimensional
cosmology. The condition of zero internal pressure
follows from the fact that the energy-momentum
tensor is purely (3+1) dimensional.

Our choice of the value R, = 10%° Planck lengths is
derived by fitting the total conserved entropy of ra-
diation only. At this stage our model completely ig-
nores the matter-dominated late stage of the uni-
verse. However, it will correctly reproduce the present
2.7 K microwave background radiation temperature.
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